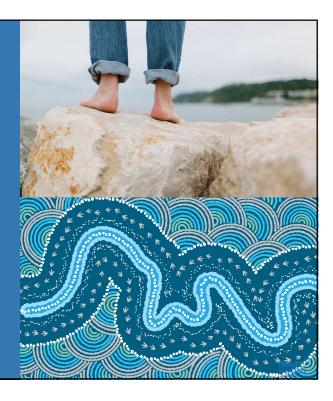
Functional Electrical Stimulation in the Neurological Population

NeuroRehab Allied Health Network

ATSA Melbourne, 2023



1

ZC0

Acknowledgement of Country

We'd like to begin by acknowledging the Traditional Owners of the land on which we meet today. We recognize their continuing connection to land, waters and culture and pay our respects to Elders past, present and emerging.

ZCO Bec

Zoe Crasborn, 2023-03-23T06:32:07.033

Presenters

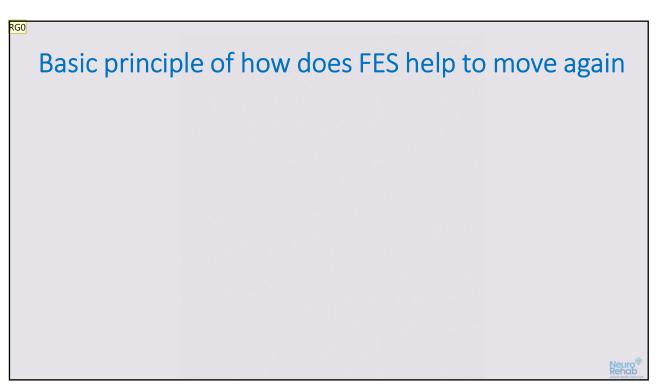
Zoe Crasborn Senior Occupational Therapist (MCRNOT)

Zoe has 8 years experience working with clients with neurological conditions. She completed her Bachelor of OT in New Zealand and completed Masters in Clinical Rehabilitation (Neurological Rehabilitation) at Flinders University. Zoe has strong interests in non-invasive brain stimulation and movement disorders.

Bec graduated from LaTrobe University with a Masters of Physiotherapy. She is a keen advocate for people with a disability and is Chair of the Australian Physiotherapy Association Disability Committee (Victorian branch). Bec has undertaken further research in movement disorders, publishing several papers looking at the effects of music & movement therapy in Parkingon's disease. She has also undertaken further studies in Italy, at a specialised neurological rehabilitation hospital.

ZC0

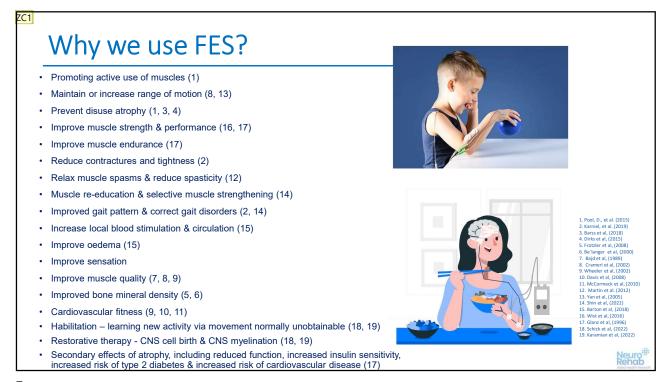
ZCO Zoe and Bec


Zoe Crasborn, 2023-03-23T06:32:17.939

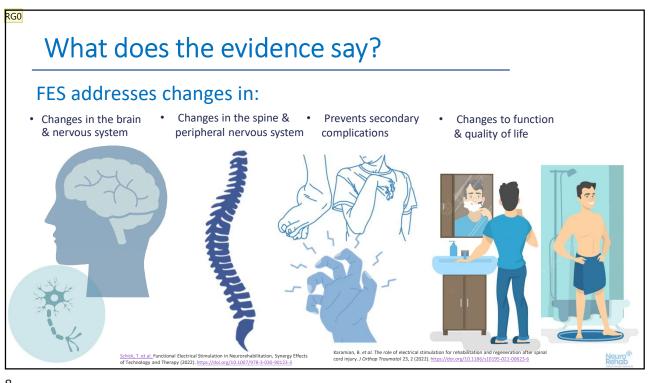
Slide 4

RG0 Zoe

Rebecca Grenfell, 2023-05-10T22:59:38.537


RG0 Zoe

Rebecca Grenfell, 2022-07-21T04:27:07.521

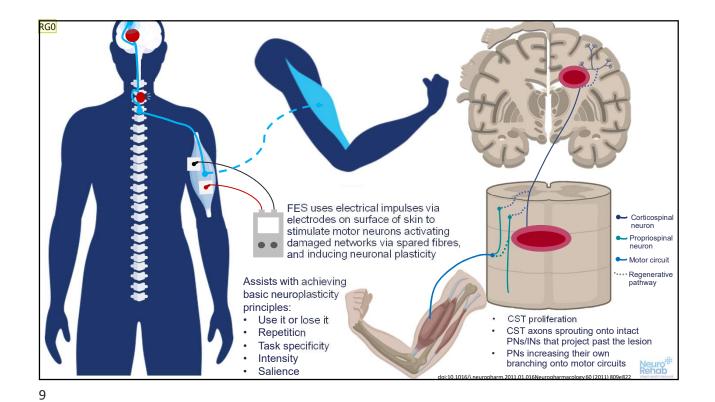

Slide 6

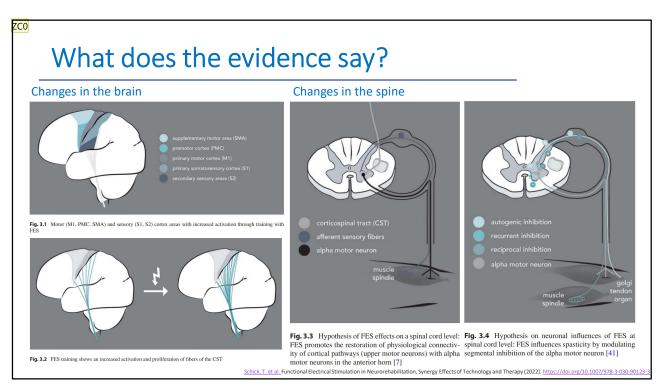
RG0 Zoe

Rebecca Grenfell, 2023-05-10T22:59:52.070

RGO Bec

Rebecca Grenfell, 2023-05-10T23:00:04.727

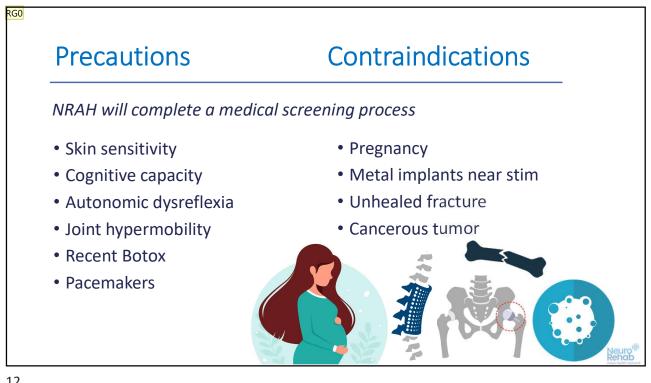

ZC1 Bec


Zoe Crasborn, 2023-05-10T23:00:05.266

Slide 8

RGO Bec

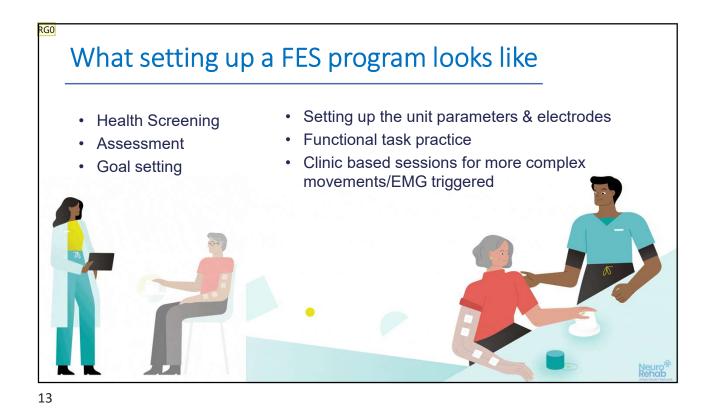
Rebecca Grenfell, 2023-05-10T23:00:09.977


C	I	i	Ч	0	0
9	H		u	c	- 0

RG0	Bec
	Rebecca Grenfell, 2023-05-10T23:00:16.832

ZCO Bec

Zoe Crasborn, 2023-05-19T11:05:55.850


ZC0	Zoe	
	7	20

Zoe Crasborn, 2023-03-23T05:58:55.804

Slide 12

RG0 Zoe

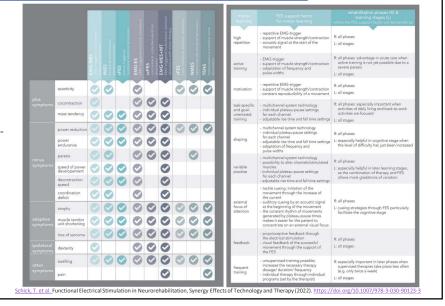
Rebecca Grenfell, 2023-05-10T22:59:20.095

RG0	Bec
	Rebecca Grenfell, 2023-05-10T23:06:14.772

Slide 14

RGO Bec

Rebecca Grenfell, 2023-05-10T23:06:19.570

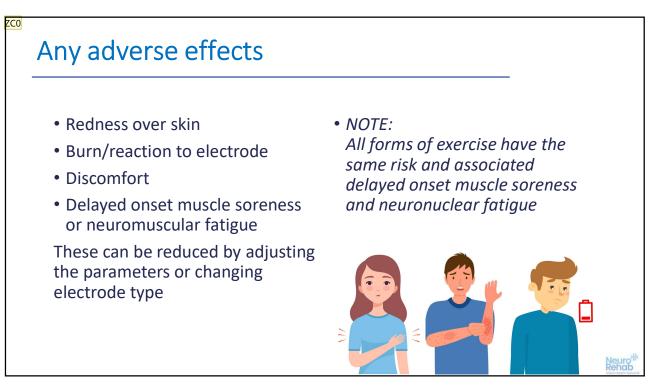


ZC0

Why is FES so great?

The following aspects are of great relevance in Motor Learning and can be ideally implemented in therapy with FES:

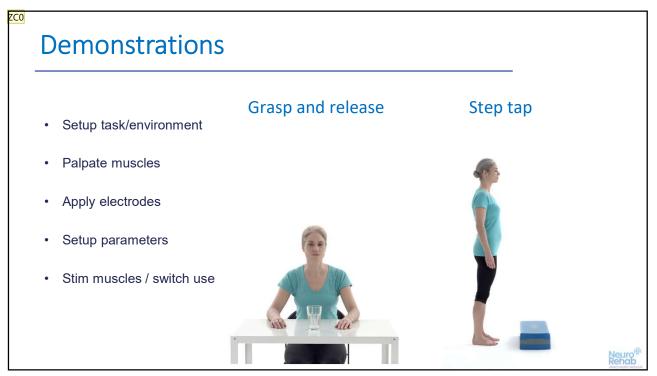
- High repetition.
- Active training.
- Motivation.
- Reinforcement (positive rewardprediction error).
- Task-specific and goal-oriented training.
- Shaping.
- Variable practice.
- External focus of attention.
- Feedback.
- Frequent training (dosage/duration).


RG0	Bec
	Rebecca Grenfell, 2023-05-10T23:06:24.202

Slide 16

ZCO Bec

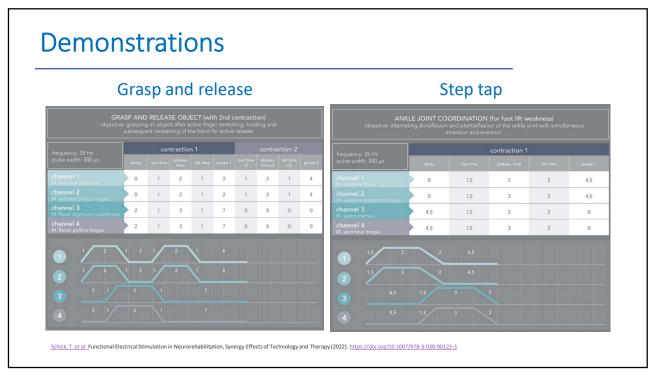
Zoe Crasborn, 2023-05-19T11:06:22.008

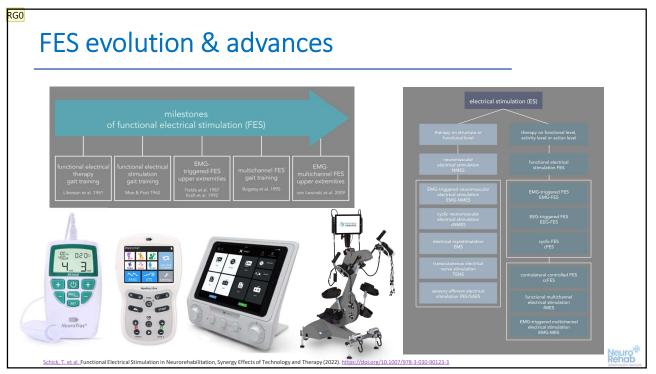

Zoe Crasborn, 2023-05-10T23:00:54.407

Slide 18

ZCO Zoe

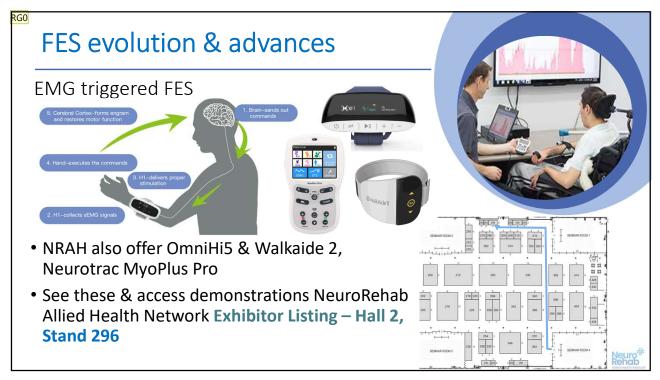
Zoe Crasborn, 2023-05-10T23:01:07.439


ZCO Zoe


Zoe Crasborn, 2023-05-10T23:01:19.626

Slide 20

ZCO Zoe


Zoe Crasborn, 2023-04-12T07:12:50.869

RGO Bec

Rebecca Grenfell, 2023-05-10T23:24:14.321

KUU ZOE	RG0	Zoe
---------	-----	-----

Rebecca Grenfell, 2023-05-15T05:53:49.638

Slide 24

RG0 Zoe

Rebecca Grenfell, 2023-05-15T05:23:41.086

References

Bae, S., Lee, J., & Lee, B. H. (2020, September). Effect of an EMG–FES Interface on Ankle Joint Training Combined with Real-Time Feedback Stroke Hemiparesis. In <i>Healthcare</i> (Vol. 8, No. 3, p. 292). Multidisciplinary Digital Publishing Institute.	on Balance and Gait in Patients with
Bergmann, M., Zahharova, A., Reinvee, M., Asser, T., Gapeyeva, H., & Vahtrik, D. (2019). The effect of functional electrical stimulation and ther and dynamic sitting balance in persons with chronic spinal cord injury: A crossover trial. Medicina (Kaunas, Lithuania), 55(10), 619 https://doi.	rapeutic exercises on trunk muscle tone org/10.3390/medicina55100619
Bosques, G., et al. (2016). Does therapeutic electrical stimulation improve function in children with disabilities? A comprehensive literature revie Medicine: An Interdisciplinary Approach. 9: p. 83-99.	w. Journal of Pediatric Rehabilitation
Burns, F., Calder, A., & Devan, H. (2022). Experiences of individuals with multiple sclerosis and stroke using transcutaneous foot drop electrical meta-synthesis of qualitative studies. Disability and Rehabilitation, ahead-of-print(ahead-of-print), 1–10. https://doi.org/10.1080/09638288.2022.	I stimulators: a systematic review and .2076936
Canadian Agency for Drugs and Technologies in Health (2015). Functional Electrical Stimulation (FES) for Children with Spinal Cord Injuries or Clinical Effectiveness. [Online] Available from: https://www.cadth.ca/functional-electrical-stimulation-fes-children-spinal-cord-injuries-or-cerebral	Cerebral Palsy : Update of Review of I-palsy-update-review
Carson, R. G., & Buick, A. R. (2021). Neuromuscular electrical stimulation-promoted plasticity of the human brain. The Journal of Physiology, 58 https://doi.org/10.1113/JP278298	99(9), 2375–2399.
Chen, YH., Wang, HY., Liao, CD., Liou, TH., Escorpizo, R., & Chen, HC. (2022). Effectiveness of neuromuscular electrical stimulation in cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. Clinical Rehabilitation, 26921552211096–26921552210 https://doi.org/10.1177/02692155221109661	improving mobility in children with 19661.
Chiu, H.C. and L. Ada (2014). Effect of functional electrical stimulation on activity in children with cerebral palsy: a systematic review. Pediatric I	Physical Therapy. 26(3): p. 283-288.
Cobo-Vicente, F., San Juan, A. F., Larumbe-Zabala, E., Estévez-González, A. J., Donadio, M. V. F., & Pérez-Ruiz, M. (2021). Neuromuscular E Strength, Biomechanics of Movement, and Functional Mobility in Children With Chronic Neurological Disorders: A Systematic Review and Meta https://doi.org/10.1093/pt/jozab170	Electrical Stimulation Improves Muscle I-Analysis. Physical Therapy, 101(10), 1–.
Dolbow, Gorgey, A. S., Recio, A. C., Stiens, S. A., Curry, A. C., Sadowsky, C. L., Gater, D. R., Martin, R., & McDonald, J. W. (2015). Activity-Bacord injury: Inter-institutional conceptions and perceptions. Aging and Disease, 6(4), 254–261. <u>https://doi.org/10.14336/AD.2014.1105</u>	ased Restorative Therapies after spinal
Eraifej, J., Clark, W., France, B., Desando, S., & Moore, D. (2017). Effectiveness of upper limb functional electrical stimulation after stroke for th and motor function: A systematic review and meta-analysis. Systematic Reviews, 6(1), 40–40. https://doi.org/10.1186/s13643-017-0435-5	e improvement of activities of daily living
Gervasoni, E., Parelli, R., Uszynski, M., Crippa, A., Marzegan, A., Montesano, A., & Cattaneo, D. (2016). Effects of Functional Electrical Stimula Gait Parameters in Multiple Sclerosis and Stroke. PM & R, 9(4), 339–347.e1. https://doi.org/10.1016/j.pmrj.2016.10.019	ation on Reducing Falls and Improving
Ha, S, Y., Han, J. H., Ko, Y. J., & Sung, Y. H. (2020). Ankle exercise with functional electrical stimulation affects spasticity and balance in stroke Rehabilitation, 16(6), 496.	e patients. Journal of Exercise
Harvey, L. A., Fornusek, C., Bowden, J. L., Pontifex, N., Glinsky, J., Middleton, J. W., Gandevia, S. C., & Davis, G. M. (2010). Electrical stimulat for leg strength in spinal cord injury: A randomized controlled trial. Spinal Cord, 48(7), 570–575. https://doi.org/10.1038/sc.2009.191	tion plus progressive resistance training
Hong, Z., Sui, M., Zhuang, Z., Liu, H., Zheng, X., Cai, C., & Jin, D. (2018). Effectiveness of Neuromuscular Electrical Stimulation on Lower Limb Chronic Stroke: A Systematic Review. Archives of Physical Medicine and Rehabilitation, 99(5), 1011–1022.e1. https://doi.org/10.1016/j.apmr.20	os of Patients With Hemiplegia After 017.12.019

Huber, J., Kaczmarek, K., Leszczyńska, K., & Daroszewski, P. (2022). Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. International Journal of Environmental Research and Public Health, 19(2), 964–. https://doi.org/10.3390/ijerph19020964 Intiso, D., Santamato, A., & Di Rienzo, F. (2017). Effect of electrical stimulation as an adjunct to botulinum toxin type A in the treatment of adult spasticity: a systematic review. Disability and Rehabilitation, 39(21), 2123–2133. https://doi.org/10.1080/09638288.2016.1219398 Kapadia, N., Zivanovic, V., & Popovic, M. R. (2013). Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: Pilot study. Topics in Spinal Cord Injury Rehabilitation, 19(4), 279–287. https://doi.org/10.1310/sci1904-279 Karabay, I., et al. (2012). Effects of functional electrical stimulation on trunk control in children with diplegic cerebral palsy. Disability and Rehabilitation. 34(11): p. 965-970. Karamian, B. A., Siegel, N., Nourie, B., Serruya, M. D., Heary, R. F., Harrop, J. S., & Vaccaro, A. R. (2022). The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. Journal of Orthopaedics and Traumatology, 23(1), 2–2. https://doi.org/10.1186/s10195-021-00623-6 Kristensen, M. G. H., Busk, H., & Wienecke, T. (2022). Neuromuscular Electrical Stimulation Improves Activities of Daily Living Post Stroke: A Systematic Review and Meta-analysis. Archives of Rehabilitation Research and Clinical Translation, 4(1), 100167–100167. https://doi.org/10.1016/j.arct.2021.100167. Leung, J., Harvey, L. A., Moseley, A. M., Whiteside, B., Simpson, M., & Stroud, K. (2014). Standing with electrical stimulation and splinting is no better than standing alone for management of ankle plantarflexion contractures in people with traumatic brain injury: a randomised trial. Journal of Physiotherapy, 60(4), 201–208. https://doi.org/10.1016/j.jphys.2014.09.007 van der Linden, M.L., et al. (2008). Functional electrical stimulation to the dorsiflexors and quadriceps in children with cerebral palsy. Pediatric Physical Therapy. 20: p. 23-39 van der Linden, M.L. and T.H. Mercer (2017). Functional Electrical Stimulation to Treat Foot Drop as a Result of an Upper Motor Neuron Lesion, in Electroceuticals. Springer International Publishing: New York, NY. p. 257-282. Mangold, S., Keller, T., Curt, A., & Dietz, V. (2005). Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury. Spinal Cord, 43(1), 1–13. https://doi.org/10.1038/sj.sc.3101644 Marquez-Chin, C., & Popovic, M. R. (2020). Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomedical Engineering Online, 19(1), 34–34. https://doi.org/10.1186/s12938-020-00773-4 McDonald, J. W., Sadowsky, C. L., & Stampas, A. (2012). The changing field of rehabilitation: Optimizing spontaneous regeneration and functional recovery. Handbook of Clinical Neurology, 109, 317–336. https://doi.org/10.1016/B978-0-444-52137-8.00020-6 Miller, L., McFadyen, A., Lord, A. C., Hunter, R., Paul, L., Rafferty, D., Bowers, R., & Mattison, P. (2017). Functional Electrical Stimulation for Foot Drop in Multiple Sclerosis: A Systematic Review and Meta-Analysis of the Effect on Gait Speed. Archives of Physical Medicine and Rehabilitation, 98(7), 1435–1452. https://doi.org/10.1016/j.apmr.2016.12.007 Monte-Silva, K., Piscitelli, D., Norouzi-Gheidari, N., Batalja, M. A. P., Archambault, P., & Levin, M. F. (2019), Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabilitation and Neural Repair, 33(2), 96–111. https://doi.org/10.1177/154596319826053 Moll, I., et al. (2017). Functional electrical stimulation of the ankle dorsiflexors during walking in spastic cerebral palsy: a systematic review. Developmental Medicine & Child Neurology. National Institute for Health and Care Excellence (March 2016). ODFS Pace and Pace XL functional electrical stimulation devices for treating drop foot. Medtech innovation briefing MIB56, [Online] Available from: https://www.nice.org.uk/guidance/mib56/resources/odfs-pace-and-pace-xl-functional-electrical-stimulation-devices-for-treating-drop-foot-634092298661 National Institute for Health and Care Excellence (January 2009). Functional electrical stimulation for foot drop of central neurological origin. NICE Interventional Procedures Guidance IPG 278. [Online] Available from: https://www.nice.org.uk/guidance/ipg278

Ou, CH., Shiue, CC., Kuan, YC., Liou, TH., Chen, HC., & Kuo, TJ. (2022). Neuromuscular Electrical Stimulation of Upper Extremities in Patients with Cerebral Palsy: A systematic review and Meta-Analysis of Randomized Controlled Trials. American Journal of Physical Medicine & Rehabilitation, Publish Ahead of Print. https://doi.org/10.1097/PHM.000000000000258
Prenton, S., K.L. Hollands, and L.P.J. Kenney (2016). Functional electrical stimulation versus ankle foot orthoses for foot-drop: A meta-analysis of orthotic effects. Journal of Rehabilitation Medicine. 48: p. 646-656.
Pool, D., et al. (2015), The orthotic and therapeutic effects following daily community applied functional electrical stimulation in children with unilateral spastic cerebral palsy: A randomised controlled trial. BMC Pediatrics. 15: p. 154-163.
Park, E.S., et al. (2001). The effect of electrical stimulation on the trunk control in young children with spastic diplegic cerebral palsy. Journal of Korean medical science. 16(3): p. 347-350.
Pool, D., et al. (2015). Neuromuscular electrical stimulation-assisted gait increases muscle strength and volume in children with unilateral spastic cerebral palsy. Developmental Medicine & Child Neurology. 58(5): p. 492-501
Popovic, M. R. Kapadia, N., Zivanovic, V., Furlan, J. C., Graven, B. C., & McGillivray, C. (2011). Functional Electrical Stimulation Therapy of Voluntary Grasping Versus Only Conventional Rehabilitation for Patients With Subacute Incomplete Tetraplegia: A Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 25(5), 433–442. https://doi.org/10.1177/1545968510392924
Rath, M., Vette, A. H., Ramasubramaniam, S., Li, K., Burdick, J., Edgerton, V. R., Gerasimenko, Y. P., & Sayenko, D. G. (2018). Trunk Stability Enabled by Noninvasive Spinal Electrical Stimulation after Spinal Cord Injury. Journal of Neurotrauma, 35(21), 254–2553. https://doi.org/10.1089/neu.2017.5584
Salazar, A. P., Pagnussat, A. S., Pereira, G. A., Scopel, G., & Lukrafka, J. L. (2019). Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis. Revista Brasileira de Fisioterapia (São Carlos (São Paulo, Brazil)), 23(5), 378–386. https://doi.org/10.1016/j.bjt.2019.01.006
Sharif, F., Ghulam, S., Malik, A. N., & Saeed, Q. (2017). Effectiveness of functional electrical stimulation (FES) versus conventional electrical stimulation in gait rehabilitation of patients with stroke. J Coll Physicians Surg Pak, 27(11), 703-706.
Silva, P. E., De Cássia Marqueti, R., Livino-De-Carvalho, K., De Araujo, A. E. T., Castro, J. Da Silva, V. M., Vieira, L., Souza, V. C., Dantas, L. O., Cipriano, G., Nóbrega, O, T., Babault, N., & Durigan, J. L. O., (2019). Neuromuscular electrical stimulation in critically ill traumatic brain injury patients attenuates muscle atrophy, neurophysiological disorders, and weakness: A randomized controlled trial. Journal of Intensive Care, 7(1), 59–59. https://doi.org/10.1186/s40560-019-0417-x
Sivaramakrishnan, A., Solomon, J. M., & Manikandan, N. (2018). Comparison of transcutaneous electrical nerve stimulation (TENS) and functional electrical stimulation (FES) for spasticity in spinal cord injury - A pilot randomized cross-over trial. The Journal of Spinal Cord Medicine, 41(4), 397–406. https://doi.org/10.1080/10790268.2017.1390930
SPOREA, C., & FERECHIDE, D. (2021). Benefits of Upper Limb Functional Electrical Stimulation in Children with Spastic Cerebral Palsy. Medicina Modernă (Bucharest, Romania), 28(2), 201–207. https://doi.org/10.31689/rmm.2021.28.2.201
Springer, S., & Khamis, S. (2017). Effects of Functional Electrical Stimulation on Gait in People with Multiple Sclerosis - A Systematic Review. Multiple Sclerosis and Related Disorders, 13, 4–12. https://doi.org/10.1016/j.msard.2017.01.010
Stein, R.B., Everaert, D.G., Thompson, A.K., Chong, S.L., Whittaker, M., et al.: Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil. Neural Repair 24(2), 152–167 (2010). https://doi.org/10.1177/1545968309347681
Synnot, A., Chau, M., Pitt, V., O'Connor, D., Gruen, R. L., Wasiak, J., Clavisi, O., Pattuwage, L., Phillips, K., & Synnot, A. (2017). Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database of Systematic Reviews, 2017(11), CD008929-CD008929. https://doi.org/10.1002/14651858.CD008929.pub2
Yildizgören, M. T., Nakipoğlu Yüzer, G. F., Ekiz, T., & Özgirgin, N. (2014). Effects of Neuromuscular Electrical Stimulation on the Wrist and Finger Flexor Spasticity and Hand Functions in Cerebral Palsy. Pediatric Neurology, 51(3), 360–364. https://doi.org/10.1016/j.pediatmeurol.2014.05.009